

AQA

PHYSICS PAPER 1

PERSONAL LEARNING CHECKLISTS

2022

	AQA Physics (8463) from 2016 Topics P4.1. Energy			
Topic	Student Checklist	R	Α	G
D	Define a system as an object or group of objects and state examples of changes in the			
4.1.1 Energy changes in a system, and the ways energy is stored before and after such changes	way energy is stored in a system			
	Describe how all the energy changes involved in an energy transfer and calculate			
	relative changes in energy when the heat, work done or flow of charge in a system			
erg	changes			
eu	Use calculations to show on a common scale how energy in a system is redistributed			
ays	Calculate the kinetic energy of an object by recalling and applying the equation:			
ang	$[E_k = \frac{1}{2}mv^2]$			
th ch	Calculate the amount of elastic potential energy stored in a stretched spring by			
p Y	applying, but not recalling, the equation: [E _e = ½ke ²]			
e, r	Calculate the amount of gravitational potential energy gained by an object raised			
ten ifte	above ground level by recalling and applying, the equation: [$E_e = mgh$]			
syst	Calculate the amount of energy stored in or released from a system as its			
a	temperature changes by applying, but not recalling, the equation: $[\Delta E = mc\Delta\theta]$			
nges in a system, and the ways before and after such changes	Define the term 'specific heat capacity'			
nge bef	Required practical 1: investigation to determine the specific heat capacity of one or			
har	more materials.			
<u>ح</u> د	Define power as the rate at which energy is transferred or the rate at which work is			
erg	done and the watt as an energy transfer of 1 joule per second			
E	Calculate power by recalling and applying the <i>equations</i> : [P = E/t & P = W/t]			
1.1	Explain, using examples, how two systems transferring the same amount of energy			
4	can differ in power output due to the time taken			
	State that energy can be transferred usefully, stored or dissipated, but cannot be			
_	created or destroyed and so the total energy in a system does not change			
Conservation and dissipation of energy	Explain that only some of the energy in a system is usefully transferred, with the rest			
ipa	'wasted', giving examples of how this wasted energy can be reduced			
liss	Explain ways of reducing unwanted energy transfers and the relationship between			
р 2 >	thermal conductivity and energy transferred			
n ar erg	Describe how the rate of cooling of a building is affected by the thickness and thermal			
ation and of energy	conductivity of its walls			
'val	Required practical 2: investigate the effectiveness of different materials as thermal			
Isei	insulators and the factors that may affect the thermal insulation properties of a			
Ö	material.			
1.2 (Calculate efficiency by recalling and applying the equation: [efficiency = useful power			
4.1	output / total power input]			
	HT ONLY: Suggest and explain ways to increase the efficiency of an intended energy			
	transfer			
a l	List the main renewable and non-renewable energy resources and define what a renewable energy resource is			
lob s	Compare ways that different energy resources are used, including uses in transport,			
d g	electricity generation and heating			
an	Explain why some energy resources are more reliable than others, explaining patterns			
nal	and trends in their use			
atio	Evaluate the use of different energy resources, taking into account any ethical and			
3 National and gluenergy resources	environmental issues which may arise			
4.1.3 National and global energy resources	Justify the use of energy resources, with reference to both environmental issues and			
4	the limitations imposed by political, social, ethical or economic considerations			
<u> </u>	the initiations imposed by political, social, etilical of economic considerations			

	AQA Physics (8463) from 2016 Topics P4.2. Electricity			
Topic	Student Checklist	R	Α	G
	Draw and interpret circuit diagrams, including all common circuit symbols			
Jce	Define electric current as the rate of flow of electrical charge around a closed circuit			
tar	Calculate charge and current by recalling and applying the formula: [Q = It]			
esis	Explain that current is caused by a source of potential difference and it has the same			
d r	value at any point in a single closed loop of a circuit			
an	Describe and apply the idea that the greater the resistance of a component, the			
nce	smaller the current for a given potential difference (p.d.) across the component			
iffereı	Calculate current, potential difference or resistance by recalling and applying the equation: $[V = IR]$			
p Je	Required practical 3: Use circuit diagrams to set up and check circuits to investigate			
ntia	the factors affecting the resistance of electrical circuits			
ote	Define an ohmic conductor			
4.2.1 Current, potential difference and resistance	Explain the resistance of components such as lamps, diodes, thermistors and LDRs and sketch/interpret IV graphs of their characteristic electrical behaviour			
.1 Curr	Explain how to measure the resistance of a component by drawing an appropriate circuit diagram using correct circuit symbols			
4.2	Required practical 4: use circuit diagrams to construct appropriate circuits to investigate the I–V characteristics of a variety of circuit elements			
	Show by calculation and explanation that components in series have the same			
<u>le</u>	current passing through them			
4.2.2 Series and parallel circuits	Show by calculation and explanation that components connected in parallel have the same the potential difference across each of them			
ies anc circuits	Calculate the total resistance of two components in series as the sum of the resistance of each component using the equation: $[R_{total} = R_1 + R_2]$			
erie ci	Explain qualitatively why adding resistors in series increases the total resistance			
2 S.	whilst adding resistors in parallel decreases the total resistance			
1.2.	Solve problems for circuits which include resistors in series using the concept of			
4	equivalent resistance			
ъ	Explain the difference between direct and alternating voltage and current, stating			
4.2.3 Domestic uses and safety	what UK mains is			
	Identify and describe the function of each wire in a three-core cable connected to			
	the mains			
nestic safety	State that the potential difference between the live wire and earth (0 V) is about 230			
omo Sč	V and that both neutral wires and our bodies are at, or close to, earth potential (0 V)			
Ď	Explain that a live wire may be dangerous even when a switch in the mains circuit is			
4.2.3	open by explaining the danger of providing any connection between the live wire and earth			

4.2.4 Energy transfers	Explain how the power transfer in any circuit device is related to the potential	
	difference across it and the current through it	
	Calculate power by recalling and applying the equations: $[P = VI]$ and $[P = I^2R]$	
	Describe how appliances transfer energy to the kinetic energy of motors or the	
	thermal energy of heating devices	
	Calculate and explain the amount of energy transferred by electrical work by	
	recalling and applying the equations: [E = Pt] and [E = QV]	
8	Explain how the power of a circuit device is related to the potential difference across	
ner	it, the current through it and the energy transferred over a given time.	
4 E	Describe, with examples, the relationship between the power ratings for domestic	
2.	electrical appliances and the changes in stored energy when they are in use	
4	Identify the National Grid as a system of cables and transformers linking power	
	stations to consumers	
	Explain why the National Grid system is an efficient way to transfer energy, with	
	reference to change in potential difference reducing current	
	PHY ONLY: Describe the production of static electricity by the rubbing of insulating	
	surfaces	
	PHY ONLY: Describe evidence that charged objects exert forces of attraction or	
ity	repulsion on one another when not in contact	
tric	PHY ONLY: Explain how the transfer of electrons between objects can explain the	
) 	phenomenon of static electricity, including how insulators are charged and sparks are	
ic e	created	
tat	PHY ONLY: Draw the electric field pattern for an isolated charged sphere	
4.2.5 Static electricity	PHY ONLY: Explain the concept of an electric field and the decrease in its strength as	
	the distance from it increases	
	PHY ONLY: Explain how the concept of an electric field helps to Explain the non-	
	contact force between charged objects as well as other electrostatic phenomena such	
	as sparking	
L	1 ' 5	

	AQA Physics (8463) from 2016 Topics P4.3. Particle model of matter			
TOPIC	Student Checklist	R	Α	G
	Calculate the density of a material by recalling and applying the equation: $[\rho = m/V]$			
4.3.1 Changes of state and the particle model	Recognise/draw simple diagrams to model the difference between solids, liquids and			
	gases			
a –	Use the particle model to explain the properties of different states of matter and			
ate	differences in the density of materials			
f st mo	Required practical 5: use appropriate apparatus to make and record the			
s o cle	measurements needed to determine the densities of regular and irregular solid objects			
anges of state particle model	and liquids			
ha.	Death and describe the grown of the grown should be brighted as the grown state.			
.10	Recall and describe the names of the processes by which substances change state			
4.3	Use the particle model to explain why a change of state is reversible and affects the			
	properties of a substance, but not its mass			
_	State that the internal energy of a system is stored in the atoms and molecules that			
pu e	make up the system			
gy 8	Explain that internal energy is the total kinetic energy and potential energy of all the			
ner Isfe	particles in a system			
l er	Calculate the change in thermal energy by applying but not recalling the equation			
rna 3V t	$[\Delta E = m c \Delta \theta]$			
4.3.2 Internal energy and energy transfers	Calculate the specific latent heat of fusion/vaporisation by applying, but not recalling,			
.2 l	the equation: [E = mL]			
4.3	Interpret and draw heating and cooling graphs that include changes of state			
_	Distinguish between specific heat capacity and specific latent heat			
	Explain why the molecules of a gas are in constant random motion and that the			
ē	higher the temperature of a gas, the greater the particles' average kinetic energy			
nss	Explain, with reference to the particle model, the effect of changing the temperature			
pre	of a gas held at constant volume on its pressure			
pu	Calculate the change in the pressure of a gas or the volume of a gas (a fixed mass held			
<u>a</u>	at constant temperature) when either the pressure or volume is increased or			
ode	decreased			
Ĕ	PHY ONLY: Explain, with reference to the particle model, how increasing the volume in			
4.3.3 Particle model and pressure	which a gas is contained can lead to a decrease in pressure when the temperature is			
	Constant RUN ONLY Color late the pressure for a fixed some of any hold at a constant	-		
ω -	PHY ONLY: Calculate the pressure for a fixed mass of gas held at a constant			
4.3.	temperature by applying, but not recalling, the equation: [pV = constant]			
,	PHY & HT ONLY: Explain how work done on an enclosed gas can lead to an increase			
	in the temperature of the gas, as in a bicycle pump			

	AQA Physics (8463) from 2016 Topics P4.4. Atomic structure			
TOPIC	Student Checklist	R	Α	G
4.4.1 Atoms and isotopes	Describe the basic structure of an atom and how the distance of the charged particles			
	vary with the absorption or emission of electromagnetic radiation			
	Define electrons, neutrons, protons, isotopes and ions			
	Relate differences between isotopes to differences in conventional representations of			
At	their identities, charges and masses			
4.4.1 is	Describe how the atomic model has changed over time due to new experimental			
	evidence, inc discovery of the atom and scattering experiments (inc the work of James			
	Chadwick)			
	Describe and apply the idea that the activity of a radioactive source is the rate at			
	which its unstable nuclei decay, measured in Becquerel (Bq) by a Geiger-Muller tube			
	Describe the penetration through materials, the range in air and the ionising power			
o	for alpha particles, beta particles and gamma rays			
iati	Apply knowledge of the uses of radiation to evaluate the best sources of radiation to			
ad	use in a given situation			
arı	Use the names and symbols of common nuclei and particles to complete balanced			
cle	nuclear equations, by balancing the atomic numbers and mass numbers			
<u> </u>	Define half-life of a radioactive isotope			
auc	HT ONLY: Determine the half-life of a radioactive isotope from given information			
us s	and calculate the net decline, expressed as a ratio, in a radioactive emission after a			
tor	given number of half-lives			
2 A	Compare the hazards associated with contamination and irradiation and outline			
4.4.2 Atoms and nuclear radiation	suitable precautions taken to protect against any hazard the radioactive sources may present			
	Discuss the importance of publishing the findings of studies into the effects of			
	radiation on humans and sharing findings with other scientists so that they can be			
	checked by peer review			
	PHY ONLY: State, giving examples, that background radiation is caused by natural and			
ive	man-made sources and that the level of radiation may be affected by occupation			
act	and/or location			
uses of radioactive ackground radiation	PHY ONLY: Explain the relationship between the instability and half-life of radioactive			
ra	isotopes and why the hazards associated with radioactive material differ according to			
s of	the half-life involved			
ses	PHY ONLY: Describe and evaluate the uses of nuclear radiation in exploration of			
4.4.3 Hazards and u emissions and of bad	internal organs and controlling or destroying unwanted tissue			
	PHY ONLY: Evaluate the perceived risks of using nuclear radiation in relation to given			
	data and consequences			
	PHY ONLY: Describe nuclear fission			
	PHY ONLY: Draw/interpret diagrams representing nuclear fission and how a chain			
	reaction may occur			
	PHY ONLY: Describe nuclear fusion			